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Abstract. We use a recently developed Monte Carlo method to study the connective 
constant of the self-avoiding walk (SAW) on the triangular lattice. Assuming y = g, we 
find k = 4 . 1 5 0 9 6 f 0 . 0 0 0  1OiO.00026 (95% confidence limits) and pT=4.15096* 
0.000 20 * 0.000 37 (99% confidence limits), where the first error bar represents systematic 
error due to corrections to scaling and the second error bar represents statistical error. 
This rules out the conjecture pT+ pH = 6 at the greater than 99% confidence level. 

Nearly two decades ago, Sykes observed that the connective constants of the self- 
avoiding walk (SAW) on the triangular and honeycomb lattices appear to satisfy very 
closely the relation 

and he conjectured that the relation (1) might be exact. Subsequent numerical studies 
by Guttmann et a1 (1968), Guttmann and Sykes (1973) and Watts (1975) gave strong 
support to this conjecture: they found pT+ p H  = 5.999 * 0.006, 5.9998 * 0.0020 and 
5.9998 f 0.0012, respectively. 

The conjecture is a tantalising one. For the Ising model, the well known Kramers- 
Wannier duality (Syozi 1972, Savit 1980, Baxter 1982) and star-triangle transformation 
(Syozi 1972, Baxter 1982) actually give two relations between the triangular lattice and 
honeycomb lattice critical temperatures, allowing both to be determined exactly. The 
same occurs in bond percolation (Sykes and Essam 1964, Wierman 1981). However, 
for the self-avoiding walk, no exact duality or star-triangle transformation is known, 
only a ‘star-triangle inequality’ (Guttmann and Sykes 1973, but see also Watson 1974). 

The conjecture takes on added interest in light of Nienhuis’ (1982, 1984) exact11 
value for the connective constant of the SAW on the honeycomb lattice, / - L ~ =  
( 2 + f i ) l ”  = 1.847 759. . .: one is led to the precise conjecture 

/-LT+ /-LH P 6 (1) 

/ - ~ ~ 2 6 - ( 2 + & ) ” ~ = 4 . 1 5 2 2 4 0  . . . .  (2) 

1 1  Though Nienhuis’ argument is non-rigorous, his results are almost certainly correct. His argument in fact 
yields the exact critical temperature for a family of n-component spin models on the honeycomb lattice, as 
a function of n :  x , ( n )  = (2+&)-’/*. For n = 1 (Ising model) and n = 2 (a modified plane-rotator model), 
this agrees with the known exa& values; and for n = 0 (self-avoiding walk), it agrees splendidly with the 
best numerical estimate pH = 1.8478*0.0001 (Watts 1975, Guttmann 1984). Baxter (1986) has obtained 
Nienhuis’ result for pH by an alternative, and more direct, method. 

0305-4470/86/132951+08%02.50 @ 1986 The Institute of Physics 2591 
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Nienhuis’ derivation is based on a combination of exact transformations and renormali- 
sation group arguments; the exact transformations rely heavily on the fact that the 
honeycomb lattice has coordination number 3 (so that polygons without common 
bonds cannot touch), and have no apparent analogue for lattices of coordination 
number 24.  Thus, the conjectures (1) and (2), if true, could be explained only by 
radically new theoretical ideas. 

Unfortunately, we show in this paper that the conjectures (1) and (2) are almost 
certainly false. Previously, Guttmann (1984) reanalysed the series expansions for SAW 
on the regular two-dimensional lattices (square, triangular and honeycomb), in order 
to account for non-analytic corrections to scaling as predicted by renormalisation 
group theory (Wegner 1972, Brkzin et a f  1976): using 18 terms of the chain-generating- 
function series on the triangular lattice and assuming Nienhuis’ (1982, 1984) exact 
critical exponent? y = $, he estimated pT = 4.150 75 * 0.000 30. A more recent analysis, 
based on 19 terms and using integral approximants (Rehr et al 1980), yields p T =  
4.150 81 + 0.000 31 if y is unconstrained and pT= 4.150 77 i 0.000 04 if y = 8 is assumed 
(Guttmann 1986a). The conjectured exact value for pT thus lies some 5-40 error bars 
distant from the current central estimates. However, series extrapolation is a notoriously 
tricky business (Nickel 1982, Guttmann 1986b): everything rests on the perhaps 
unjustified faith that the behaviour of N-step SAW for N S 19 is a reliable guide to 
their asymptotic behaviour as N -$a. Moreover, the error bars are subjective, and are 
based solely on criteria of internal consistency. It is thus of some interest to complement 
the series-extrapolation results with a Monte Carlo study: by using walks of length 
N = 100-1000, the potential systematic errors due to unknown corrections to scaling 
are dramatically reduced (provided that the leading correction-to-scaling exponent A ,  
is not too close to zero); one pays the price of statistical error, but this error can be 
quantified objectively as a statistical confidence interval. 

We use the Monte Carlo algorithm and statistical methods of Berretti and Sokal 
(1985); details can be found in that paper, so we give here only a brief synopsis. The 
algorithm is a dynamic Monte Carlo algorithm which generates SAW in the grand 
canonical ensemble 

Prob(1ength = N )  = constant x p N ~ N  (3) 

where cN is the number of distinct N-step SAW and p is a user-chosen parameter. The 
cN are assumed to have the asymptotic behaviour 

c N = p N N y - l A ( l + a , / N + . .  .) (4) 

as N+co (this assumption is discussed in more detail below), and we use maximum- 
likelihood estimation (MLE) to determine p and y. It can be shown that MLE is an 
optimal estimation method (Silvey 1975). The algorithm’s autocorrelation time 7 is of 
order (N)*, and is estimated numerically using standard methods of statistical time- 
series analysis (Priestley 1981); this plays an important role in the determination of 
error bars. 

Our main run was performed at p = 0.2397, corresponding to 

t In Nienhuis’ original article (1982), pH = ( 2 + f i ) ’ / *  and v =: were supported by a renormalisation group 
argument, but y = 3 had only the status of a promising numerical conjecture. Subsequently, Nienhuis (1984) 
gave the result for y a comparable renormalisation group foundation. 
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We took the initial configuration to be the empty walk, and then performed 10.8 x lo9 
Monte Carlo iterations; this took approximately 500 h CPU time on the Perkin-Elmer 
3220 minicomputer (using a rather inefficient FORTRAN compiler) at the University of 
Newcastle. Data were taken once every lo5 MC iterations. In doing the statistical 
analysis we always skipped the data from the first 10’ MC iterations; since this is 5300 T 
(see below), the system has clearly reached equilibrium. We used a linear congruential 
pseudo-random-number generator ( PRNG) 

with c = 1 and m = 232; the multiplier was a = 1566 083 941 for the first third of the run 
and a = 1664 525 for the latter two-thirds?. Both generators are recommended by 
Knuth (1981, p 102). We verified that the results from the two parts of the run agree 
within statistical error; this provides an extra check against subtle defects in one or 
both of the PRNG. 

An autocorrelation analysis yielded T = (3 * 1) x lo5 MC iterations, i.e. T .- 5(N)*, in 
close agreement with the results of Berretti and Sokal (1985) for the square lattice 
self-avoiding walk problem. 

We performed a two-parameter maximum-likelihood estimation of p and y, using 
the ansatz$ 

(4‘) 
for a range of values of a ,  and Nmin; the results are shown in table 1. The estimates 
for Nmin = 0 are clearly biased by strong systematic error due to higher-order corrections 
to scaling not included in (49, and the estimates for Nmin = 400,800 have huge statistical 
error due to the small sample size of such long walks; we thus concentrate on the 
remaining values of Nmin. It is somewhat difficult to apply the ‘flatness criterion’ 
(Berretti and Sokal 1985) to this table, because of the large statistical fluctuations; the 
‘glitch’ at Nmin = 100, 200 makes analysis particularly difficult. We conclude that any 
value of a ,  in the range -0 .5s  a , S 2 . 0  gives a reasonable degree of flatness (for 
25 S NminG 200), although the values 0.25 G a ,  S 1.0 give a somewhat flatter plot for 
p, and the values 0.5 G a ,  G 1.5 give a somewhat flatter plot for y. The fact that the 
‘good’ values of a ,  do not coincide for p and y, contrary to what was observed by 
Berretti and Sokal (1985), is probably due, once again, to statistical fluctuation. We 
shall therefore quote a very conservative systematic error, by using all the values 
0.25 G a ,  S 1.5 for both p and y (estimates printed in boldface in table 1): following 
Berretti and Sokal (1985), we obtain 

x,+, = (ax, + c )  mod m (6) 

cN = p N (  N + 3)’-’A[l+ U , / (  N +  3)] for N 2 Nmin 

p = 4.150 93 *O.OOO 21 *O.OOO 91 

y = 1.348 f 0.033 * 0.083 
(7 )  

where the first error bar represents systematic error due to unincluded corrections to 
scaling (subjective 95% confidence limits), and the second error bar represents statis- 
tical error (classical 95% confidence limits, taken at Nmin = 100). 

t Thus, the second PRNG cycled through its full period (232) nearly twice! It is perhaps slightly embarrasing 
that the same ‘random numbers’ were used more than once, but we do not consider it particularly serious: 
save for a possible (but highly improbable) fluke, the two cycles of the PRNG will have encountered the 
SAW in radically different configurations, so the responses will be ‘unrelated’ and the resulting data 
‘independent’. 
$ The constant 3 occumng in equation (4’) has no special significance; it could be replaced by any small 
positive number. Provided that N,,, is reasonably large, a change in this constant is equivalent to a 
redefinition of a , ,  up to corrections of order 1/ Nkin which can be ignored. 
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Table 1. Two-parameter maximum-likelihood estimates of p and y, assuming ( 4 ) .  Error 
bars are 95% confidence intervals and include statistical error only. 

25 50 100 200 400 800 

-0.50 

-0.25 

0.00 

0.25 

0.50 

0.75 

1 .oo 

1.25 

1.50 

1.75 

2.00 

4.150 890 
*o.ooo 494 

1.341 950 
10.027 209 

4.150 804 
io.000 494 

1.350 039 
10.027 146 

4.150 722 
*0.000 494 

1.357 902 
10.027 085 

4.150612 
*o.ooo 494 

1.365 553 
k0.027 030 

4.150 561 
*o.ooo 494 

1.373 003 
i0.026 977 

4.150 489 
*o.ooo 494 

1.380 263 
10.026 928 

4.1 54 416 
10.000 494 

1.387 342 
k0.026 879 

4.150 345 
*o.ooo 494 

1.394 250 
10.026 836 

4.1 50 276 
*o.ooo 494 

1.400 996 
k0.026 793 

4.150209 
10.000 494 

1.407 585 
*0.026 754 

4.150 144 
*0.000 494 

1.414 027 
10.026 715 

4.151 037 
iO.000 604 

1.330 094 
k0.039 784 

4.151 014 
iO.000 604 

1.333 267 
i0.039 782 

4.1 50 990 
*O.OOO 604 

1.336418 

4.150 967 
*O.OOO 604 

1.339 548 
10.039 780 

4.150 944 
iO.000 604 

1.342 655 
10.039 780 

4.150 922 
iO.000 604 

1.345 742 
10.039 778 

4.150 899 
10.000 604 

1.348 807 
10.039 778 

4.150 877 
10.000 604 

1.351 852 
k0.039 776 

4.150 855 
10.000 604 

1.354 876 
10.039 776 

4.150 833 
iO.000 604 

1.357 880 
i0.039 774 

4.150 81 1 
10.000 604 

1.360 864 
i0.039 774 

10.039 782 

4.150 998 
ltO.Oo0 704 

1.333 564 
i0.052 963 

4.150 983 
10.000 704 

1.335 865 
10.052 965 

4.150 969 
*0.0oO 704 

1.338 157 
i0.052 967 

4.150 955 
kO.000 704 

1.340 438 
10.052 969 

4.150 941 
iO.000 704 

1.342 709 
10.052 971 

4.150 927 
10.000 704 

1.344 970 
i0.052 973 

4.150 913 
10.000 706 

1.347 220 
i0.052 975 

4.150 899 
10.000 706 

1.349 461 

4.150 885 

1.351 691 

4.150 871 
1 O . O o 0  706 

1.353 911 
10.052 981 

4.150 858 
i O . O o 0  706 

1.356 122 
10.052 983 

i0.052 977 

*O.OOO 706 

10.052 979 

4.151 061 
*o.OOo 909 

1.326 395 
i0.083 375 

4.151 053 
iO.000 909 

1.327 997 
10.083 378 

4.151 045 
10.000 909 

1.329 594 
*0.083 380 

4.151 037 
io.000 909 

1.331 186 
10.083 384 

4.151 029 
10.000 909 

1.332 774 
i0.083 388 

4.151 021 
10.000 909 

1.334 357 
10.083 390 

4.151 013 
10.000 909 

1.335 936 
k0.083 394 

4.151 006 
*O.OOO 909 

1.337 510 
10.083 396 

4.150 998 
iO.000 909 

1.339 079 
10.083 400 

4.150 990 
1o.OOo 909 

1.340 644 
10.083 404 

4.150983 
*O.OOo 909 

1.342 205 
*0.083 406 

4.150 853 
iO.001 41 1 

1.355 784 
i0.170 879 

4.150 849 
kO.001 411 

1.356 853 
i0.170 883 

4.150 845 
10.001411 

1.357 921 
i0.170 885 

4.150 841 
10.001 41 1 

1.358 987 
*O. 170 889 

4.150837 
*0.001 41 1 

1.360 052 
10.170 892 

4.150 833 
iO.001411 

1.361 113 
*0.170 896 

4.150 829 
10.001 411 

1.362 174 
i0.170 900 

4.150 825 
kO.001 41 1 

1.363 232 
i0.170904 

4.150 821 
10.001411 

1.364 288 
*0.170908 

4.150 817 
*0.001 41 1 

1.365 343 
10.170910 

4.150 813 
iO.001411 

1.366 395 
10.170 914 

4.151 019 
10.002 973 

1.330 I16 
*0.520 743 

4.151 017 
10.002 973 

1.330 799 
*OS20 749 

4.151 015 
*0.002 973 

1.331 482 
10.520 753 

4.151 013 
r0.002 973 

1.332 165 
k0.520 756 

4.151 012 
*0.002 973 

1.332 846 
10.520 762 

4.151 010 
*0.002 973 

1.333 526 
10.520 766 

4.151 008 
10.002 973 

1.334 206 
k0.520 770 

4.151 006 
*0.002 973 

1.334 886 
r0.520 774 

4.151 005 
10.002 973 

1.335 565 
k0.520 780 

4.151 003 
r0.002 973 

1.336 241 
10.520 784 

4.151 001 
10.002 973 

1.336 919 
*0.520 788 

4.152 147 
10.010 988 

0.958 396 
13.045 829 

4.152 147 
iO.010 988 

0.958 813 
k3.045 836 

4.152 146 
*0.010 988 

0.959 229 
i3.045 844 

4.152 145 
*0.010 988 

0.959 645 
i3.045 851 

4.152 145 
10.010 988 

0.960 061 
*3.045 858 

4.152 144 
*0.010 988 

0.960 177 
13.045 866 

4.152 143 
10.010 988 

0.960 890 
k3.045 877 

4.152 143 

0.961 305 
13.045 883 

4.152 142 
10.010 988 

0.961 720 
i3.045 891 

4.152 141 

0.962 134 
13.045 899 

4.152 141 
10.010 988 

0.962 548 
13.045 907 

*0.010 988 

iO.010 988 



Connective constant of the SA w on the triangular lattice 2595 

We emphasise that the ansatz (4’) ignores a possible non-analytic correction to 
scaling with exponent A I <  I t ,  as well as higher-order corrections to scaling. However, 
it appears to us unfeasible at present to distinguish reliably between O S S A , <  1.0 and 
A1=l.O, because of the relatively large statistical errors at large Nmin (and Nmin must 
be large if the leading correction to scaling is to dominate all the others); any effect 
of A, # 1 could for all practical purposes be absorbed into a slightly changed value of 
a,.  As more powerful computers become available for Monte Carlo work, a more 
sophisticated analysis of corrections to scaling will become important. In any case, 
the errors resulting here from the approximation A,> 1,  as well as from the neglected 
higher-order corrections to scaling, are included in the quoted systematic error. This 
estimate of the systematic error should be reliable (and indeed conservative) provided 
only that A I  is not too close to zero, e.g. A1>0.5. There have been several estimates 
of A I  in the literature (see references cited below), and all are 20.67. 

The result (7 )  for y is consistent with Nienhuis’ (1982, 1984) exact value y = g =  
1.343 75, but the error bars are clearly too large for the estimate to be of much interest! 
The estimate for p is not bad-it already rules out conjecture (2) at the 95% confidence 
level-but we can do much better by assuming y = g  and performing a one-parameter 
maximum-likelihood analysis. The results are shown in table 2. We ignore the values 
Nmin=O, 800 for the reasons noted previously. The ‘glitch’ at Nmin=lOO, 200 is still 
present, but it is weaker than in table 1 .  The flattest plots are found for a,=0.75, 1.0, 
but a reasonable degree of flatness can be obtained for any value in the range 
0 .25sa ,S  1.5; using these latter values (estimates printed in boldface), we obtain 

p=4.15096*0.000 10*0.000 32 (95% confidence limits) (8a) 

and$ 

p =4.150 96*0.000 20*0.000 42 (99% confidence limits). (8b) 

The conjecture (2) is thus ruled out at the greater than 99% confidence level. We do 
not attempt to specify the exact level of confidence (e.g. 99.999%), since to do so 
would require a detailed analysis of the small deviations from normality in the MLE, 

as well as prolonged (and probably fruitless) introspection to determine the extreme 
tails of our subjective probability distribution for the systematic error. We prefer to 
leave well enough alone. 

The estimates and error bars in tables 1 and 2 were computed by using all the data 
as if they were independent, and then multiplying the MLE theory error bars by a factor 
~ ( 2 7 ) ” ~  with 7=3x105 to adjust for the effects of autocorrelations. As a check, we 
performed an alternate analysis: we split the run (or rather, almost all of it) into 15 
equal-sized blocks, each one large enough (=20007) to be considered effectively 
independent and for the block MLE to be normally distributed; we then determined 
confidence intervals using the standard t test. Typical results are shown in table 3. 
The two methods give nearly identical central estimates; the slight discrepancies are 

t Evidence for such an exponent in the two-dimensional SAW is highly contradictory: compare Le Guillou 
and Zinn-Justin (1980), Grassberger (1982), Nienhuis (1982), Havlin and Ben-Avraham (1983), Majid et a1 
(1983), Adler (1983), Djordjevic et a1 (1983), Privman (1984), Guttmann (1984, 198S), Rapaport (1985a, b) 
and Kremer and Lyklema (198s). 
?t Note that our systematic error bar for 99% confidence is twice as wide as that for 95% confidence, while 
the statistical error bar is only 2.S8/1.96=1.31 times as wide. This is because our subjective probability 
distribution for the systematic error has ‘heavy tails’ (reflecting our uncertainty about the true form of 
corrections to scaling), while the statistical error in the MLE is approximately normally distributed. 
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Table 2. One-parameter maximum-likelihood estimates of fi ,  assuming (4’) with y = g. 
Error bars are 95% confidence intervals and include statistical error only. 

Nmln 0 25 50 100 200 400 800 \ 
-0.50 

-0.25 

0.00 

0.25 

0.50 

0.75 

1 .oo 

1.25 

1.50 

1.75 

2.00 

4.150 862 
iO.000 267 

4.150901 
iO.000 267 

4.150 939 
iO.000 267 

4.150 977 
*O.OOO 265 

4.151 015 
iO.000 265 

4.151 052 
=tO.OOO 265 

4.151 089 

4.151 126 
*0.000 265 

4.151 163 
iO.000 263 

4.151 199 
*O.OOO 263 

4.151 235 
iO.000 263 

*O.OOO 265 

4.150 853 

4.150 872 
*O.OOO 276 

4.150 891 
iO.000 274 

4.150911 
iO.000 274 

4.150930 
iO.000 274 

4.150 949 

4.150 968 
iO.000 274 

4.150 986 

4.151 005 
*O.OOO 274 

4.151 024 

4.151 042 
r0.000 274 

iO.000 276 

1-0.000 274 

iO.000 274 

*O.OOO 274 

4.150 874 
i 0.000 288 

4.150 887 
*O.OOO 288 

4.150901 
iO.000 288 

4.150 915 
iO.000 288 

4.150 928 
iO.000 288 

4.150 941 
*O.OOO 288 

4.150 955 
*O.OOO 286 

4.150 968 
iO.000 286 

4.150 981 
*O.OOO 286 

4.150995 
*O.OOO 286 

4.151 008 
iO.000 286 

4.150883 
*O.OOO 3 18 

4.150 892 

4.150 900 
*O.OOO 318 

4.150 908 
iO.000 318 

4.150917 
iO.000 318 

4.150 925 
iO.000 318 

4.150 934 
10.000318 

4.150 942 
*o.ooo 3 18 

4.150 950 
*O.OOO 318 

4.150958 
iO.000 318 

4.150967 
iO.000 318 

1-0.000 318 

4.150 948 
*O.OOO 392 

4.150 953 
*O.OOO 392 

4.150957 
iO.000 392 

4.150 962 
+O.OOO 392 

4.150 966 
iO.000 392 

4.150 971 
iO.000 392 

4.150 975 
iO.000 392 

4.150 979 
iO.000 392 

4.150 984 
*O.OOO 392 

4.150 988 
*O.OOO 392 

4.150993 
iO.000 392 

4.150942 
*0.000617 

4.150944 
+O.OOO 617 

4.150946 
kO.000 617 

4.150 949 
iO.000617 

4.150 951 
*O.OOO 615 

4.150 953 
iO.000615 

4.150 955 
+O.OOO 615 

4.150 957 
*O.OOO 615 

4.150 959 
iO.000 615 

4.150961 

4.150963 
*O.OOO 615 

*0.000 615 

4.150 769 
*0.001 584 

4.150 770 
iO.001 584 

4.150 771 
*0.001 584 

4.150 772 
*0.001 584 

4.150 772 
*0.001 584 

4.150 773 
iO.001 584 

4.150 774 
iO.001 584 

4.150 775 
*0.001 584 

4.150776 
iO.001 584 

4.150 776 
*0.001 584 

4.150 777 
iO.001 584 

Table 3. Comparison of autocorrelation-adjusted M L E  analysis with ‘blocking’/ f-test 
analysis. Both analyses use the whole run minus the first 10’ MC iterations and the last 
2 x IO8 iterations; both are one-parameter maximum-likelihood estimates of p assuming 
y = g. Error bars are 95% confidence intervals. 

a1  = 1.0 a,  = 1.0 a,  = 1.0 
“,” = 0 N,,, = 100 N,, ,  = 200 

Autocorrelation-adjusted M L E  4.151 100 4.150941 4.150980 
iO.000 267 iO.000 319 iO.000 396 

‘Blocking’/ t test 4.151 091 4.150928 4.150 960 
iO.000 257 *O.OOO 264 *O.OOO 302 

attributable to the differing biases of the full-run and block MLE (since bias - l/sample 
size). For this reason we consider the central estimates based on full-run MLE to be 
more accurate (their bias is <0.000002 for all Nmi,s200). The two methods give 
nearly identical error bars for Nmi, = 0, but for Nmin = 100, 200 the error bars based 
on the autocorrelation-adjusted MLE are significantly larger than those based on the t 
test. This can be explained as follows: as Nmi0 increases, fewer data points contribute 
(so the MLE theory error bars increase correspondingly); but this also means that the 
average spacing in time between contributing data points grows, so they are probably 
less strongly autocorrelated; if so, it is an overcorrection to multiply the MLE theory 
error bars by ( 2 ~ ) ” ~  with T = 3 x 10’. We conclude that the error bars based on the 
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autocorrelation-adjusted MLE (tables 1 and 2) are overly conservative?, and that those 
based on the t test are probably more accurate. Our final estimates are therefore 

(95% confidence limits) (9a)  p = 4:150 96 * 0.000 10 f 0.000 26 

and 

p = 4.1 50 96 * 0.000 20 * 0.000 37 ( 9 9 O / 0  confidence limits). (9b) 

These estimates agree well with (but are slightly higher than) the series-extrapolation 
estimates; they have, however, larger error bars. 

Finally, we remark on the theoretical justification of the 'flatness criterion' in the 
maximum-likelihood estimation of p and/or y. Suppose that the true asymptotic form 
of cN is 

cN = P ~ ( N + ~ ) ~ - ' A [ ~  + u : " ' / ( N + ~ ) + O ( N - ~ ) ]  (10) 
with A > 1, but that we use the ansatz (4') to compute our maximum likelihood estimates. 
Then, if a, # aye, our estimates of /L and y will be afflicted by a systematic error of 
order l/N:i, and l /Nmin,  respectively (with amplitude proportional to a, -ai"'); but 
i f a  , - - atrue , , then the systematic error will be of order 1/ NkT, and l / N i i n ,  respectively. 
That is, the plot of or .F against Nmin will be asymptoticallyflatter as N m i n + a  if a, 
is chosen equal to the 'correct' value aye. (If A < 1, then the systematic error will be 
of order l / N z ;  and l / N i i n  no matter what value is chosen for a,; that is, the flatness 
criterion does asymptotically no good at all, but neither does it do any harm.) In 
practice, of course, the flatness criterion is not applied asymptotically as Nmi, + CO, but 
rather for some range of intermediate Nmin for which the statistical error is not too 
large. In that case the 'optimum' value of a, will be that 'effective' amplitude which 
best simulates the true combination of correction-to-scaling terms in that range of Nmi,. 
We have tested the flatness criterion on a sample of 1.2 x lo7 independent ordinary 
random walks of average length ~ 1 0 0 ,  generated by simple sampling; the results point 
unerringly to the correct value ape = 0. 

In summary: assuming pH = ( 2 + ~ ' ? ) ' ' ~  and y = $, our Monte Carlo data rule out 
the conjecture pT+ pH = 6 at the greater than 99% confidence level. Instead, we find 

/AT+ = 5.998 72 f 0.000 36 (11) 
as our 95% confidence bounds. Such coincidences do happen. 
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