Connective constant of the self-avoiding walk on the triangular lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 192591
(http://iopscience.iop.org/0305-4470/19/13/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:01

Please note that terms and conditions apply.

Connective constant of the self-avoiding walk on the triangular lattice

A J Guttmann \dagger, Thomas R Osborn \ddagger and Alan D Sokal§
\dagger Department of Mathematics, Statistics and Computer Science, The University of Newcastle, NSW, Australia 2308
\ddagger School of Computing Sciences, New South Wales Institute of Technology, PO Box 123 , Broadway 2007, Australia
§ Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

Received 13 September 1985, in final form 19 November 1985

Abstract

We use a recently developed Monte Carlo method to study the connective constant of the self-avoiding walk (sAw) on the triangular lattice. Assuming $\gamma=\frac{43}{32}$, we find $\mu_{\mathrm{T}}=4.15096 \pm 0.00010 \pm 0.00026$ (95% confidence limits) and $\mu_{\mathrm{T}}=4.15096 \pm$ 0.00020 ± 0.00037 (99% confidence limits), where the first error bar represents systematic error due to corrections to scaling and the second error bar represents statistical error. This rules out the conjecture $\mu_{\mathrm{T}}+\mu_{\mathrm{H}}=6$ at the greater than 99% confidence level.

Nearly two decades ago, Sykes observed that the connective constants of the selfavoiding walk (SAW) on the triangular and honeycomb lattices appear to satisfy very closely the relation

$$
\begin{equation*}
\mu_{\mathrm{T}}+\mu_{\mathrm{H}} \stackrel{?}{=} 6 \tag{1}
\end{equation*}
$$

and he conjectured that the relation (1) might be exact. Subsequent numerical studies by Guttmann et al (1968), Guttmann and Sykes (1973) and Watts (1975) gave strong support to this conjecture: they found $\mu_{\mathrm{T}}+\mu_{\mathrm{H}}=5.999 \pm 0.006,5.9998 \pm 0.0020$ and 5.9998 ± 0.0012, respectively.

The conjecture is a tantalising one. For the Ising model, the well known KramersWannier duality (Syozi 1972, Savit 1980, Baxter 1982) and star-triangle transformation (Syozi 1972, Baxter 1982) actually give two relations between the triangular lattice and honeycomb lattice critical temperatures, allowing both to be determined exactly. The same occurs in bond percolation (Sykes and Essam 1964, Wierman 1981). However, for the self-avoiding walk, no exact duality or star-triangle transformation is known, only a 'star-triangle inequality' (Guttmann and Sykes 1973, but see also Watson 1974).

The conjecture takes on added interest in light of Nienhuis' $(1982,1984)$ exact $\|$ value for the connective constant of the saw on the honeycomb lattice, $\mu_{\mathrm{H}}=$ $(2+\sqrt{2})^{1 / 2}=1.847759 \ldots:$ one is led to the precise conjecture

$$
\begin{equation*}
\mu_{\mathrm{T}} \stackrel{3}{\underline{2}} 6-(2+\sqrt{2})^{1 / 2}=4.152240 \ldots \tag{2}
\end{equation*}
$$

[^0]Nienhuis' derivation is based on a combination of exact transformations and renormalisation group arguments; the exact transformations rely heavily on the fact that the honeycomb lattice has coordination number 3 (so that polygons without common bonds cannot touch), and have no apparent analogue for lattices of coordination number $\geqslant 4$. Thus, the conjectures (1) and (2), if true, could be explained only by radically new theoretical ideas.

Unfortunately, we show in this paper that the conjectures (1) and (2) are almost certainly false. Previously, Guttmann (1984) reanalysed the series expansions for saw on the regular two-dimensional lattices (square, triangular and honeycomb), in order to account for non-analytic corrections to scaling as predicted by renormalisation group theory (Wegner 1972, Brézin et al 1976): using 18 terms of the chain-generatingfunction series on the triangular lattice and assuming Nienhuis' $(1982,1984)$ exact critical exponent $\dagger \gamma=\frac{43}{32}$, he estimated $\mu_{T}=4.15075 \pm 0.00030$. A more recent analysis, based on 19 terms and using integral approximants (Rehr et al 1980), yields $\mu_{\mathrm{T}}=$ 4.15081 ± 0.00031 if γ is unconstrained and $\mu_{\mathrm{T}}=4.15077 \pm 0.00004$ if $\gamma=\frac{43}{32}$ is assumed (Guttmann 1986a). The conjectured exact value for μ_{T} thus lies some 5-40 error bars distant from the current central estimates. However, series extrapolation is a notoriously tricky business (Nickel 1982, Guttmann 1986b): everything rests on the perhaps unjustified faith that the behaviour of N-step saw for $N \leqslant 19$ is a reliable guide to their asymptotic behaviour as $N \rightarrow \infty$. Moreover, the error bars are subjective, and are based solely on criteria of internal consistency. It is thus of some interest to complement the series-extrapolation results with a Monte Carlo study: by using walks of length $N \approx 100-1000$, the potential systematic errors due to unknown corrections to scaling are dramatically reduced (provided that the leading correction-to-scaling exponent Δ_{1} is not too close to zero); one pays the price of statistical error, but this error can be quantified objectively as a statistical confidence interval.

We use the Monte Carlo algorithm and statistical methods of Berretti and Sokal (1985); details can be found in that paper, so we give here only a brief synopsis. The algorithm is a dynamic Monte Carlo algorithm which generates saw in the grand canonical ensemble

$$
\begin{equation*}
\operatorname{Prob}(\text { length }=N)=\text { constant } \times \beta^{N} c_{N} \tag{3}
\end{equation*}
$$

where c_{N} is the number of distinct N-step saw and β is a user-chosen parameter. The c_{N} are assumed to have the asymptotic behaviour

$$
\begin{equation*}
c_{N}=\mu^{N} N^{\gamma-1} A\left(1+a_{1} / N+\ldots\right) \tag{4}
\end{equation*}
$$

as $N \rightarrow \infty$ (this assumption is discussed in more detail below), and we use maximumlikelihood estimation (MLE) to determine μ and γ. It can be shown that mLe is an optimal estimation method (Silvey 1975). The algorithm's autocorrelation time τ is of order $\langle\boldsymbol{N}\rangle^{2}$, and is estimated numerically using standard methods of statistical timeseries analysis (Priestley 1981); this plays an important role in the determination of error bars.

Our main run was performed at $\beta=0.2397$, corresponding to

$$
\begin{equation*}
\langle N\rangle \approx \beta \mu \gamma /(1-\beta \mu) \approx 265 \tag{5}
\end{equation*}
$$

[^1]We took the initial configuration to be the empty walk, and then performed 10.8×10^{9} Monte Carlo iterations; this took approximately 500 h cPU time on the Perkin-Elmer 3220 minicomputer (using a rather inefficient FORTRAN compiler) at the University of Newcastle. Data were taken once every $10^{5} \mathrm{mc}$ iterations. In doing the statistical analysis we always skipped the data from the first 10^{8} mC iterations; since this is $\approx 300 \tau$ (see below), the system has clearly reached equilibrium. We used a linear congruential pseudo-random-number generator (PRNG)

$$
\begin{equation*}
x_{n+1}=\left(a x_{n}+c\right) \bmod m \tag{6}
\end{equation*}
$$

with $c=1$ and $m=2^{32}$; the multiplier was $a=1566083941$ for the first third of the run and $a=1664525$ for the latter two-thirds \dagger. Both generators are recommended by Knuth (1981, p 102). We verified that the results from the two parts of the run agree within statistical error; this provides an extra check against subtle defects in one or both of the PRNG.

An autocorrelation analysis yielded $\tau=(3 \pm 1) \times 10^{5} \mathrm{MC}$ iterations, i.e. $\tau \approx 5\langle N\rangle^{2}$, in close agreement with the results of Berretti and Sokal (1985) for the square lattice self-avoiding walk problem.

We performed a two-parameter maximum-likelihood estimation of μ and γ, using the ansatz \ddagger

$$
c_{N}=\mu^{N}(N+3)^{\gamma-1} A\left[1+a_{1} /(N+3)\right] \quad \text { for } N \geqslant N_{\min }
$$

for a range of values of a_{1} and $N_{\min }$; the results are shown in table 1 . The estimates for $N_{\min }=0$ are clearly biased by strong systematic error due to higher-order corrections to scaling not included in (4'), and the estimates for $N_{\text {min }}=400,800$ have huge statistical error due to the small sample size of such long walks; we thus concentrate on the remaining values of $N_{\min }$. It is somewhat difficult to apply the 'flatness criterion' (Berretti and Sokal 1985) to this table, because of the large statistical fluctuations; the 'glitch' at $N_{\min }=100,200$ makes analysis particularly difficult. We conclude that any value of a_{1} in the range $-0.5 \leqslant a_{1} \leqslant 2.0$ gives a reasonable degree of flatness (for $25 \leqslant N_{\text {min }} \leqslant 200$), although the values $0.25 \leqslant a_{1} \leqslant 1.0$ give a somewhat flatter plot for μ, and the values $0.5 \leqslant a_{1} \leqslant 1.5$ give a somewhat flatter plot for γ. The fact that the 'good' values of a_{1} do not coincide for μ and γ, contrary to what was observed by Berretti and Sokal (1985), is probably due, once again, to statistical fluctuation. We shall therefore quote a very conservative systematic error, by using all the values $0.25 \leqslant a_{1} \leqslant 1.5$ for both μ and γ (estimates printed in boldface in table 1): following Berretti and Sokal (1985), we obtain

$$
\begin{align*}
& \mu=4.15093 \pm 0.00021 \pm 0.00091 \\
& \gamma=1.348 \pm 0.033 \pm 0.083 \tag{7}
\end{align*}
$$

where the first error bar represents systematic error due to unincluded corrections to scaling (subjective 95% confidence limits), and the second error bar represents statistical error (classical 95% confidence limits, taken at $N_{\text {min }}=100$).

[^2]Table 1. Two-parameter maximum-likelihood estimates of μ and γ, assuming (4'). Error bars are 95% confidence intervals and include statistical error only.

$a N_{\text {mın }}$	0	25	50	100	200	400	800
-0.50	4.150890	4.151037	4.150998	4.151061	4.150853	4.151019	4.152147
	± 0.000494	± 0.000604	± 0.000704	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.341950	1.330094	1.333564	1.326395	1.355784	1.330116	0.958396
	± 0.027209	± 0.039784	± 0.052963	± 0.083375	± 0.170879	± 0.520743	± 3.045829
-0.25	4.150804	4.151014	4.150983	4.151053	4.150849	4.151017	4.152147
	± 0.000494	± 0.000604	± 0.000704	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.350039	1.333267	1.335865	1.327997	1.356853	1.330799	0.958813
	± 0.027146	± 0.039782	± 0.052965	± 0.083378	± 0.170883	± 0.520749	± 3.045836
0.00	4.150722	4.150990	4.150969	4.151045	4.150845	4.151015	4.152146
	± 0.000494	± 0.000604	± 0.000704	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.357902	1.336418	1.338157	1.329594	1.357921	1.331482	0.959229
	± 0.027085	± 0.039782	± 0.052967	± 0.083380	± 0.170885	± 0.520753	± 3.045844
0.25	4.150612	4.150967	4.150955	4.151037	4.150841	4.151013	4.152145
	± 0.000494	± 0.000604	± 0.000704	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.365553	1.339548	1.340438	1.331186	1.358987	1.332165	0.959645
	± 0.027030	± 0.039780	± 0.052969	± 0.083384	± 0.170889	± 0.520756	± 3.045851
0.50	4.150561	4.150944	4.150941	4.151029	4.150837	4.151012	4.152145
	± 0.000494	± 0.000604	± 0.000704	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.373003	1.342655	1.342709	1.332774	1.360052	1.332846	0.960061
	± 0.026977	± 0.039780	± 0.052971	± 0.083388	± 0.170892	± 0.520762	± 3.045858
0.75	4.150489	4.150922	4.150927	4.151021	4.150833	4.151010	4.152144
	± 0.000494	± 0.000604	± 0.000704	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.380263	1.345742	1.344970	1.334357	1.361113	1.333526	0.960177
	± 0.026928	± 0.039778	± 0.052973	± 0.083390	± 0.170896	± 0.520766	± 3.045866
1.00	4.154416	4.150899	4.150913	4.151013	4.150829	4.151008	4.152143
	± 0.000494	± 0.000604	± 0.000706	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.387342	1.348807	1.347220	1.335936	1.362174	1.334206	0.960890
	± 0.026879	± 0.039778	± 0.052975	± 0.083394	± 0.170900	± 0.520770	± 3.045877
1.25	4.150345	4.150877	4.150899	4.151006	4.150825	4.151006	4.152143
	± 0.000494	± 0.000604	± 0.000706	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.394250	1.351852	1.349461	1.337510	1.363232	1.334886	0.961305
	± 0.026836	± 0.039776	± 0.052977	± 0.083396	± 0.170904	± 0.520774	± 3.045883
1.50	4.150276	4.150855	4.150885	4.150998	4.150821	4.151005	4.152142
	± 0.000494	± 0.000604	± 0.000706	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.400996	1.354876	1.351691	1.339079	1.364288	1.335565	0.961720
	± 0.026793	± 0.039776	± 0.052979	± 0.083400	± 0.170908	± 0.520780	± 3.045891
1.75	4.150209	4.150833	4.150871	4.150990	4.150817	4.151003	4.152141
	± 0.000494	± 0.000604	± 0.000706	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.407585	1.357880	1.353911	1.340644	1.365343	1.336241	0.962134
	± 0.026754	± 0.039774	± 0.052981	± 0.083404	± 0.170910	± 0.520784	± 3.045899
2.00	4.150144	4.150811	4.150858	4.150983	4.150813	4.151001	4.152141
	± 0.000494	± 0.000604	± 0.000706	± 0.000909	± 0.001411	± 0.002973	± 0.010988
	1.414027	1.360864	1.356122	1.342205	1.366395	1.336919	0.962548
	± 0.026715	± 0.039774	± 0.052983	± 0.083406	± 0.170914	± 0.520788	± 3.045907

We emphasise that the ansatz (4') ignores a possible non-analytic correction to scaling with exponent $\Delta_{1}<1 \dagger$, as well as higher-order corrections to scaling. However, it appears to us unfeasible at present to distinguish reliably between $0.5 \leqslant \Delta_{1}<1.0$ and $\Delta_{1} \approx 1.0$, because of the relatively large statistical errors at large $N_{\min }$ (and $N_{\min }$ must be large if the leading correction to scaling is to dominate all the others); any effect of $\Delta_{1} \neq 1$ could for all practical purposes be absorbed into a slightly changed value of a_{1}. As more powerful computers become available for Monte Carlo work, a more sophisticated analysis of corrections to scaling will become important. In any case, the errors resulting here from the approximation $\Delta_{1} \geqslant 1$, as well as from the neglected higher-order corrections to scaling, are included in the quoted systematic error. This estimate of the systematic error should be reliable (and indeed conservative) provided only that Δ_{1} is not too close to zero, e.g. $\Delta_{1} \geqslant 0.5$. There have been several estimates of Δ_{1} in the literature (see references cited below), and all are $\geqslant 0.67$.

The result (7) for γ is consistent with Nienhuis' $(1982,1984)$ exact value $\gamma=\frac{43}{32}=$ 1.34375 , but the error bars are clearly too large for the estimate to be of much interest! The estimate for μ is not bad-it already rules out conjecture (2) at the 95% confidence level-but we can do much better by assuming $\gamma=\frac{43}{32}$ and performing a one-parameter maximum-likelihood analysis. The results are shown in table 2 . We ignore the values $N_{\min }=0,800$ for the reasons noted previously. The 'glitch' at $N_{\min }=100,200$ is still present, but it is weaker than in table 1. The flattest plots are found for $a_{1}=0.75,1.0$, but a reasonable degree of flatness can be obtained for any value in the range $0.25 \leqslant a_{1} \leqslant 1.5$; using these latter values (estimates printed in boldface), we obtain

$$
\begin{equation*}
\mu=4.15096 \pm 0.00010 \pm 0.00032 \quad \text { (} 95 \% \text { confidence limits) } \tag{8a}
\end{equation*}
$$

and \ddagger

$$
\begin{equation*}
\mu=4.15096 \pm 0.00020 \pm 0.00042 \quad \text { (99\% confidence limits) } \tag{8b}
\end{equation*}
$$

The conjecture (2) is thus ruled out at the greater than 99% confidence level. We do not attempt to specify the exact level of confidence (e.g. 99.999%), since to do so would require a detailed analysis of the small deviations from normality in the mLe, as well as prolonged (and probably fruitless) introspection to determine the extreme tails of our subjective probability distribution for the systematic error. We prefer to leave well enough alone.

The estimates and error bars in tables 1 and 2 were computed by using all the data as if they were independent, and then multiplying the MLE theory error bars by a factor $\approx(2 \tau)^{1 / 2}$ with $\tau=3 \times 10^{5}$ to adjust for the effects of autocorrelations. As a check, we performed an alternate analysis: we split the run (or rather, almost all of it) into 15 equal-sized blocks, each one large enough ($\approx 2000 \tau$) to be considered effectively independent and for the block mle to be normally distributed; we then determined confidence intervals using the standard t test. Typical results are shown in table 3. The two methods give nearly identical central estimates; the slight discrepancies are

[^3]Table 2. One-parameter maximum-likelihood estimates of μ, assuming (4') with $\gamma=\frac{43}{32}$. Error bars are 95% confidence intervals and include statistical error only.

a_{1}	0	25	50	100	200	400	800
-0.50	4.150862	4.150853	4.150874	4.150883	4.150948	4.150942	4.150769
	± 0.000267	± 0.000276	± 0.000288	± 0.000318	± 0.000392	± 0.000617	± 0.001584
-0.25	4.150901	4.150872	4.150887	4.150892	4.150953	4.150944	4.150770
	± 0.000267	± 0.000276	± 0.000288	± 0.000318	± 0.000392	± 0.000617	± 0.001584
0.00	4.150939	4.150891	4.150901	4.150900	4.150957	4.150946	4.150771
	± 0.000267	± 0.000274	± 0.000288	± 0.000318	± 0.000392	± 0.000617	± 0.001584
0.25	4.150977	4.150911	4.150915	4.150908	4.150962	4.150949	4.150772
	± 0.000265	± 0.000274	± 0.000288	± 0.000318	± 0.000392	± 0.000617	± 0.001584
0.50	4.151015	4.150930	4.150928	4.150917	4.150966	4.150951	4.150772
	± 0.000265	± 0.000274	± 0.000288	± 0.000318	± 0.000392	± 0.000615	± 0.001584
0.75	4.151052	4.150949	4.150941	4.150925	4.150971	4.150953	4.150773
	± 0.000265	± 0.000274	± 0.000288	± 0.000318	± 0.000392	± 0.000615	± 0.001584
1.00	4.151089	4.150968	4.150955	4.150934	4.150975	4.150955	4.150774
	± 0.000265	± 0.000274	± 0.000286	± 0.000318	± 0.000392	± 0.000615	± 0.001584
1.25	4.151126	4.150986	4.150968	4.150942	4.150979	4.150957	4.150775
	± 0.000265	± 0.000274	± 0.000286	± 0.000318	± 0.000392	± 0.000615	± 0.001584
1.50	4.151163	4.151005	4.150981	4.150950	4.150984	4.150959	4.150776
	± 0.000263	± 0.000274	± 0.000286	± 0.000318	± 0.000392	± 0.000615	± 0.001584
1.75	4.151199	4.151024	4.150995	4.150958	4.150988	4.150961	4.150776
	± 0.000263	± 0.000274	± 0.000286	± 0.000318	± 0.000392	± 0.000615	± 0.001584
2.00	4.151235	4.151042	4.151008	4.150967	4.150993	4.150963	4.150777
	± 0.000263	± 0.000274	± 0.000286	± 0.000318	± 0.000392	± 0.000615	± 0.001584

Table 3. Comparison of autocorrelation-adjusted MLE analysis with 'blocking'/t-test analysis. Both analyses use the whole run minus the first $10^{8} \mathrm{MC}$ iterations and the last 2×10^{8} iterations; both are one-parameter maximum-likelihood estimates of μ assuming $y=\frac{43}{32}$. Error bars are 95% confidence intervals.

	$\begin{aligned} & a_{1}=1.0 \\ & N_{\mathrm{min}}=0 \end{aligned}$	$\begin{aligned} & a_{1}=1.0 \\ & N_{\min }=100 \end{aligned}$	$\begin{aligned} & a_{1}=1.0 \\ & N_{\text {min }}=200 \end{aligned}$
Autocorrelation-adjusted MLE	4.151100	4.150941	4.150980
	± 0.000267	± 0.000319	± 0.000396
'Blocking $/ \boldsymbol{t}$ test	4.151091	4.150928	4.150960
	± 0.000257	± 0.000264	± 0.000302

attributable to the differing biases of the full-run and block mLe (since bias ~ 1 /sample size). For this reason we consider the central estimates based on full-run mle to be more accurate (their bias is <0.000002 for all $N_{\min } \leqslant 200$). The two methods give nearly identical error bars for $N_{\text {min }}=0$, but for $N_{\text {min }}=100,200$ the error bars based on the autocorrelation-adjusted mLE are significantly larger than those based on the t test. This can be explained as follows: as $N_{\text {min }}$ increases, fewer data points contribute (so the mLe theory error bars increase correspondingly); but this also means that the average spacing in time between contributing data points grows, so they are probably less strongly autocorrelated; if so, it is an overcorrection to multiply the mLe theory error bars by $(2 \tau)^{1 / 2}$ with $\tau=3 \times 10^{5}$. We conclude that the error bars based on the
autocorrelation-adjusted mLe (tables 1 and 2) are overly conservative \dagger, and that those based on the t test are probably more accurate. Our final estimates are therefore

$$
\begin{equation*}
\mu=4: 15096 \pm 0.00010 \pm 0.00026 \quad(95 \% \text { confidence limits) } \tag{9a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=4.15096 \pm 0.00020 \pm 0.00037 \quad \text { (99\% confidence limits). } \tag{9b}
\end{equation*}
$$

These estimates agree well with (but are slightly higher than) the series-extrapolation estimates; they have, however, larger error bars.

Finally, we remark on the theoretical justification of the 'flatness criterion' in the maximum-likelihood estimation of μ and/or γ. Suppose that the true asymptotic form of c_{N} is

$$
\begin{equation*}
c_{N}=\mu^{N}(N+3)^{\gamma-1} A\left[1+a_{1}^{\text {true }} /(N+3)+\mathrm{O}\left(N^{-\Delta}\right)\right] \tag{10}
\end{equation*}
$$

with $\Delta>1$, but that we use the ansatz (4^{\prime}) to compute our maximum likelihood estimates. Then, if $a_{1} \neq a_{1}^{\text {rrue }}$, our estimates of μ and γ will be afflicted by a systematic error of order $1 / N_{\text {min }}^{2}$ and $1 / N_{\min }$, respectively (with amplitude proportional to $a_{1}-a_{1}^{\text {true }}$); but if $a_{1}=a_{1}^{\text {true }}$, then the systematic error will be of order $1 / N_{\min }^{\Delta+1}$ and $1 / N_{\min }^{\Delta}$, respectively. That is, the plot of $\hat{\mu}$ or $\hat{\gamma}$ against $N_{\min }$ will be asymptotically flatter as $N_{\min } \rightarrow \infty$ if a_{1} is chosen equal to the 'correct' value $a_{1}^{\text {true }}$. (If $\Delta<1$, then the systematic error will be of order $1 / N_{\text {min }}^{\Delta+1}$ and $1 / N_{\text {min }}^{\Delta}$ no matter what value is chosen for a_{1}; that is, the flatness criterion does asymptotically no good at all, but neither does it do any harm.) In practice, of course, the flatness criterion is not applied asymptotically as $N_{\min } \rightarrow \infty$, but rather for some range of intermediate $N_{\text {min }}$ for which the statistical error is not too large. In that case the 'optimum' value of a_{1} will be that 'effective' amplitude which best simulates the true combination of correction-to-scaling terms in that range of $N_{\text {min }}$. We have tested the flatness criterion on a sample of 1.2×10^{7} independent ordinary random walks of average length ≈ 100, generated by simple sampling; the results point unerringly to the correct value $a_{1}^{\text {rue }}=0$.

In summary: assuming $\mu_{\mathrm{H}}=(2+\sqrt{2})^{1 / 2}$ and $\gamma=\frac{43}{32}$, our Monte Carlo data rule out the conjecture $\mu_{\mathrm{T}}+\mu_{\mathrm{H}}=6$ at the greater than 99% confidence level. Instead, we find

$$
\begin{equation*}
\mu_{\mathrm{T}}+\mu_{\mathrm{H}}=5.99872 \pm 0.00036 \tag{11}
\end{equation*}
$$

as our 95% confidence bounds. Such coincidences do happen.

Acknowledgments

One of us (ADS) wishes to thank the Department of Mathematics, Statistics and Computer Science at the University of Newcastle for their gracious hospitality during two visits. This research was supported in part by ARGS grant B-8416060 and NSF grant DMS-8400955.

References

Adler J 1983 J. Phys. A: Math. Gen. 16 L515
Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)

[^4]_- 1986 to be published
Berretti A and Sokal A D 1985 J. Stat. Phys. 40483
Brézin E, Le Guillou J-C and Zinn-Justin J 1976 Phase Transitions and Critical Phenomena vol 6, ed C Domb and M S Green (New York: Academic)
Djordjevic Z V, Majid I, Stanley H E and dos Santos R J 1983 J. Phys. A: Math. Gen. 16 L519
Grassberger P 1982 Z. Phys. B 48255
Guttmann A J 1984 J. Phys. A: Math. Gen. 17455

- 1986a in preparation
- 1986b Phase Transitions and Critical Phenomena ed C Domb and J L Lebowitz (New York: Academic) to appear
Guttmann A J, Ninhạm B W and Thompson C J 1968 Phys. Rev. 172554
Guttmann A J and Sykes M F 1973 Aust. J. Phys. 26207
Havlin S and Ben-Avraham D 1983 Phys. Rev. A 272759
Knuth D E 1981 The Art of Computer Programming vol 2, 2nd edn (Reading, MA: Addison-Wesley)
Kremer K and Lyklema J W 1985 Preprint
Le Guillou J-C and Zinn-Justin J 1980 Phys. Rev. B 213976
Majid I, Djordjevic Z V and Stanley H E 1983 Phys. Rev. Lett. 51143
Nickel B G 1982 Phase Transitions (1980 Cargèse lectures) ed M Lévy, J-C Le Guillou and J Zinn-Justin (New York: Plenum)
Nienhuis B 1982 Phys. Rev. Lett. 491062
- 1984 J. Stat. Phys. 34731

Priestley M B 1981 Spectral Analysis and Time Series 2 vols (New York: Academic)
Privman V 1984 Physica 123A 428
Rapaport D C 1985a J. Phys. A: Math. Gen. 18 L39

- 1985b J. Phys. A: Math. Gen. 18 L201

Rehr J J, Joyce G J and Guttmann A J 1980 J. Phys. A: Math. Gen. 131587
Savit R 1980 Rev. Mod. Phys. 52453
Silvey S D 1975 Statistical Inference (London: Chapman and Hall)
Sykes M F and Essam J W 1964 J. Math. Phys. 51117
Syozi I 1972 Phase Transitions and Critical Phenomna vol 1, ed C Domb and M S Green (New York: Academic) p 270
Watson P G 1974 Physica 75627
Watts M G 1975 J. Phys. A: Math. Gen. 861
Wegner F J 1972 Phys. Rev. B 54529
Wierman J C 1981 Adv. Appl. Prob. 13298

[^0]: || Though Nienhuis' argument is non-rigorous, his results are almost certainly correct. His argument in fact yields the exact critical temperature for a family of n-component spin models on the honeycomb lattice, as a function of $n: x_{\mathrm{c}}(n)=(2+\sqrt{2-n})^{-1 / 2}$. For $n=1$ (Ising model) and $n=2$ (a modified plane-rotator model), this agrees with the known exact values; and for $n=0$ (self-avoiding walk), it agrees splendidy with the best numerical estimate $\mu_{\mathrm{H}}=1.8478 \pm 0.0001$ (Watts 1975, Guttmann 1984). Baxter (1986) has obtained Nienhuis' result for μ_{H} by an alternative, and more direct, method.

[^1]: \dagger In Nienhuis' original article (1982), $\mu_{\mathrm{H}}=(2+\sqrt{2})^{1 / 2}$ and $\nu=\frac{3}{4}$ were supported by a renormalisation group argument, but $\gamma=\frac{43}{32}$ had only the status of a promising numerical conjecture. Subsequently, Nienhuis (1984) gave the result for γ a comparable renormalisation group foundation.

[^2]: \dagger Thus, the second PRNG cycled through its full period (2^{32}) nearly twice! It is perhaps slightly embarrasing that the same 'random numbers' were used more than once, but we do not consider it particularly serious: save for a possible (but highly improbable) fluke, the two cycles of the PRNG will have encountered the SAW in radically different configurations, so the responses will be 'unrelated' and the resulting data 'independent'.
 \ddagger The constant 3 occurring in equation (4^{\prime}) has no special significance; it could be replaced by any small positive number. Provided that $N_{\text {min }}$ is reasonably large, a change in this constant is equivalent to a redefinition of a_{1}, up to corrections of order $1 / N_{\min }^{2}$ which can be ignored.

[^3]: \dagger Evidence for such an exponent in the two-dimensional SAW is highly contradictory: compare Le Guillou and Zinn-Justin (1980), Grassberger (1982), Nienhuis (1982), Havlin and Ben-Avraham (1983), Majid et al (1983), Adler (1983), Djordjevic et al (1983), Privman (1984), Guttmann (1984, 1985), Rapaport (1985a, b) and Kremer and Lyklema (1985).
 \ddagger Note that our systematic error bar for 99% confidence is twice as wide as that for 95% confidence, while the statistical error bar is only $2.58 / 1.96=1.31$ times as wide. This is because our subjective probability distribution for the systematic error has 'heavy tails' (reflecting our uncertainty about the true form of corrections to scaling), while the statistical error in the MLE is approximately normally distributed.

[^4]: \dagger This was also observed by Berretti and Sokal (1985), although they did not give any explanation for it.

